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Abstract—Tuberculosis is a major health threat in many Index Terms—computer-aided detection and diagnosis, lung,
regions of the world. Opportunistic infections in immunocom- pattern recognition and classification, segmentation, tuberculas,
promised HIV/AIDS patients and multi-drug-resistant bacterial ~ x-ray imaging
strains have exacerbated the problem, while diagnosing tuber-
culosis still remains a challenge. When left undiagnosed and
thus untreated, mortality rates of patients with tuberculosis are . INTRODUCTION
high. Standard diagnostics still rely on methods developed in the UBERCULOSIS (TB) is the second leading cause of
last century. They are slow and often unreliable. In an effort death from an infectious disease worldwide, after HIV,
to reduce the burden of the disease, this paper presents our \vith a mortality rate of over 1.2 million people in 2010 [1].

automated approach for detecting tuberculosis in conventional , . . , . .
posteroanterior chest radiographs. We first extract the lung Vith about one-third of the world’s population having laten

region using a graph cut segmentation method. For this lung TB, and an estimated nine million new cases occurring every
region, we compute a set of texture and shape features, whichyear, TB is a major global health problem [2]. TB is an
enable the x-rays to be classified as normal or abnormal using a jnfectious disease caused by the bacillus Mycobacterium tu
binary classifier. We measure the performance of our system berculosis, which typically affects the lungs. It spreddstgh

on two datasets: a set collected by the tuberculosis control he air wh le with ve TB h h .
program of our local county’s health department in the United the air when people with active cough, sneeze, or otherwis

States, and a set collected by Shenzhen Hospital, China. The€Xpel infectious bacteria. TB is most prevalent in sub-&aha
proposed computer-aided diagnostic system for TB screening, Africa and Southeast Asia, where widespread poverty and
which is ready for field deployment, achieves a performance that malnutrition reduce resistance to the disease. Moreopeore
approaches the performance of human experts. We achieve an nisfic infections in immunocompromised HIV/AIDS patisn

area under the ROC curve (AUC) of 87% (78.3% accuracy) for . .
the first set, and an AUC of 90% (84% accuracy) for the second Nave exacerbated the problem [3]. The increasing appearanc

set. For the first set, we compare our system performance with Of multi-drug resistant TB has further created an urgentinee
the performance of radiologists. When trying not to miss any for a cost effective screening technology to monitor pregre
positive cases, radiologists achieve an accuracy of about 82% ondyring treatment.

trr;itzset, and their false positive rate is about half of our system's  gayera| antibiotics exist for treating TB. While mortality
' rates are high when left untreated, treatment with anfitsot
greatly improves the chances of survival. In clinical sjal
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not be managed manually. A posteroanterior radiograph (x- [l. RELATED WORK

ray) of a patient’s chest is a mandatory part of every evaloat o ) ]
for TB [7]. The chest radiograph includes all thoracic anato ~_1he advent of digital chest radiography and the possi-
and provides a high yield, given the low cost and singlléility of digital image processing has given new impetus
source [8]. Therefore, a reliable screening system for T computer-aided screening and diagnosis. Still, desfste
detection using radiographs would be a critical step towar@mnipresence in medical practice, the standard CXR is a
more powerful TB diagnostics. The TB detection systel¥fTY complex imaging tool. In the last ten years, several
presented here is a prototype that we developed for AMPATgound-breaking papers have been published on computer-
(The Academic Model Providing Access to Healthcare) [gﬂlded diagnosis (CAD) in CXRs. However, there is no doubt
AMPATH is a partnership between Moi University School ofhat more research is needed to meet the practical perfeenan
Medicine and Moi Teaching and Referral Hospital, Kenya, arf§duirements for deployable diagnostic systems. In a tecen
a consortium of U.S. medical schools under the leaderstigrvey, van Ginneken et al. state that forty-five years alfter

of Indiana University. AMPATH provides drug treatment andfitial work on computer-aided diagnosis in chest radigiog
health education for HIV/AIDS control in Kenya. HIV and TBthere are still no systems that can accurately read chest
co-infections are very common due to the weakened immufRdiographs [14], [15], [16]. Automated nodule detectisn i
system. It is therefore important to detect patients with TRECOmMing one of the more mature applications of decision sup
infections, not only to cure the TB infection itself but alsg®ort/automation for CXR and CT. Several studies have been
to avoid drug incompatibilities. However, the shortage diublished evaluating the capability of commercially aahie
radiological services in Kenya necessitates both an efici€cAD systems to detect lung nodules [17], [18], [19]. The tesu
and inexpensive screening system for TB. Medical personﬂr%lthat CAD systems can successfully assist radiologists in
with little radiology background need to be able to operafé@gnosing lung cancer [20]. However, nodules represelyt on
the screening system. The target platform for our automat@@e of many manifestations of TB in radiographs.

system are portable x-ray scanners, which allow screerfing oln recent years, due to the complexity of developing full-
large parts of the population in rural areas. At-risk indiwals fledged CAD systems for x-ray analysis, research has concen-

identified by our system are then referred to a major hospits@ted on developing solutions for specific subproblemg, [21
for treatment. [14]. The segmentation of the lung field is a typical task that

any CAD system needs to support for a proper evaluation of

Figure 1 shows examples of normal CXRs without sigrféXRs. Other segmentations that may be helpful include the
of TB. These examples are from our Montgomery Coun§egmentation of the ribs, heart, and clavicles [22]. Fomexa
(MC) dataset that we describe in more detail in Section IIPle, van Ginneken et al. compared various techniques f@ lun
Figure 2 shows positive examples with manifestations of TE€gmentation, including active shapes, rule-based method
which are from the same dataset. Typical manifestations Rikel classification, and various combinations thereof],[22
TB in chest x-rays are, for example, infiltrations, cavias, [23]. Their conclusion was that pixel classification pradd
effusions, or miliary patterns. For instance, CXR A and @ery good performance on their test data. Dawoud presented
in Figure 2 have infiltrates in both lungs. CXR B is a goo@n iterative segmentation approach that combines intensit
example of pleural TB, which is indicated by the abnormadhnformation with shape priors trained on the publicly a=ble
shape of the costophrenic angle of the right lung. In CXRSRT database (see Section IIl) [24].

D, we see irregular infiltrates in the left lung with a large Depending on the lung segmentation, different featurestype
area of cavitation. Additionally, there is scarring in thght and ways to aggregate them have been reported in the
apical region. CXR E shows peripheral infiltrates in the lefiterature. For example, van Ginneken et al. subdivide the
lung. Finally, CXR F shows TB scars resulting from an olddring into overlapping regions of various sizes and extract
TB infection. Readers can find more illustrative examples &atures from each region [25]. To detect abnormal signs of
abnormal CXRs with TB in the references [10], [11], [12]diffuse textural nature they use the moments of responses to
[13], [8]. a multiscale filter bank. In addition, they use the differenc
between corresponding regions in the left and right lungi$iel

In this paper, we describe how we discriminate betwe@s features. A separate training set is constructed for each
normal and abnormal CXRs with manifestations of TB, usingggion and final classification is done by voting and a weighte
image processing techniques. We structure the paper as fotegration.
lows: Section Il discusses related work and shows the stateMany of the CAD papers dealing with abnormalities in chest
of-the-art. Section Il briefly describes the datasets weefos radiographs do so without focusing on any specific disease.
our experiments. In Section 1V, we present our approach wilnly a few CAD systems specializing in TB detection have
lung segmentation, feature computation, and classificatho been published, such as [25], [26], [27], [28]. For exam-
presentation of our practical experiments follows in Sat¥. ple, Hogeweg et al. combined a texture-based abnormality
Finally, a brief summary with the main results concludes ttaetection system with a clavicle detection stage to sugpres
paper. Note that some of the features we use in this paper false positive responses [26]. In [29], the same group uses a
identical to the features used in one of our earlier publicaembination of pixel classifiers and active shape models for
tions [6]. However, the lung boundary detection algorithm iclavicle segmentation. Note that the clavicle region is #Bono
this paper differs from the one used in our earlier publarati riously difficult region for TB detection because the cldetc

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.or



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

AUTOMATIC TUBERCULOSIS SCREENING USING CHEST RADIOGRAPHS 3

ey

Fig. 1. Examples of normal CXRs in the MC dataset.

Fig. 2. Examples of abnormal CXRs in the MC dataset. CXR A hasvdarg infiltrate on the left and a subtle infiltrate in the itdower lung. CXR B is
an example of pleural TB. Note that the blunted right costeplr angle indicates a moderate effusion. CXR C has infiirateboth lungs. CXR D shows
irregular infiltrates in the left lung with cavitation andastng of the right apex. CXR E shows peripheral infiltrategtie left lung. CXR F shows signs of
TB, indicated by the retraction of bilateral hila supernpmrvhich is more pronounced on the right.

can obscure manifestations of TB in the apex of the lunglassification rates comparable to rates achieved withonegi
Freedman et al. showed in a recent study that an automatiassification on CXRs with known disease locations. More
suppression of ribs and clavicles in CXRs can significantipformation on existing TB screening systems can be found
increase a radiologist’s performance for nodule deted80h in our recent survey [32].
A cavity in the upper lung zones is a strong indicator that In addition to x-ray based CAD systems for TB detec-
TB has developed into a highly infectious state [27]. Shafon, several systems based on other diagnostic means have
et al. therefore developed a hybrid knowledge-based Bayesheen reported in the literature. For example, Pangilinan et
approach to detect cavities in these regions automatif2ifly al. presented a stepwise binary classification approach for
Xu et al. approached the same problem with a model-baseduction of false positives in tuberculosis detectionnfro
template matching technique, with image enhancement baseseared slides [33]. Furthermore, automated systems based
on the Hessian matrix [28]. on bacteriological examination with new diagnostic testeeh
Arzhaeva et al. use dissimilarity-based classificatiorojpec been reported recently, such as GeneXpert (Cepheid, Sunny-
with CXRs for which the abnormality is known but thevale, CA, USA) [34]. Currently, these tests are still expens
precise location of the disease is unknown [31]. They repdyevertheless, with costs decreasing over time, thesersgste
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may become an option for poorer countries. It is also possibl
and indeed very promising, to combine these new systems
with x-ray based systems. For the time being, however, these
systems are out of the scope of this paper.

I11. DATA

For our experiments, we use three CXR sets. On the first
two sets we train and test our classifiers, and on the third set
we train our lung models. The images used in this study were
de-identified by the data providers and are exempted from IRB
review at their institutions. The data was exempted from IRB
review (No. 5357) by the NIH Office of Human Research
Protections Programs. ig. 3. JSRT CXR with manual ground-truth lung segmentatiooteNhe

Our first set, the MC set, is a rEpresentative subset ijrjgdulé overlying the left posterior fifth and sixth ribs.
larger CXR repository collected over many years within the
tuberculosis control program of the Department of Healtth an
Human Services of Montgomery County (MC), Maryland [6].
The MC set contains 138 posteroanterior CXRs, among which
80 CXRs are normal and8 CXRs are abnormal with man-
ifestations of TB. All images of the MC set are in 12-bit
grayscale, captured with an Eureka stationary x-ray machin

(CR). The abnormal CXRs cover a wide range of TB-related ,L
abnormalities, including effusions and miliary pattersr the Lung '
MC set, we know the ground-truth radiology reports that have —>| Lungsegmentation
, e . 4 model
been confirmed by clinical tests, patient history, etc. l
Our second CXR set, the Shenzhen set, is from Shenzhen

No.3 Hospital in Shenzhen, Guangdong providence, China.

Lo . . . Feature computation
Shenzhen Hospital is one of the largest hospitals in China fo

infectious diseases, with a focus both on their preventimh a l
treatment. The CXRs we received from Shenzhen Hospital .

are from out-patient clinics. They were captured within a Trained | || (psification
one month period, mostly in September 2012, as part of the classifier

daily routine at Shenzhen Hospital, using a Philips DR Rigit l
Diagnost system. The set contai) normal CXRs an@75

abnormal CXRs with TB. For the Shenzhen set, we have the Decision Support

radiologist readings, which we consider as ground-truth.
We train our lung models on a third set from the Japanes®. 4. System overview. The system takes a CXR as input afplitsua

Society of Radiological Technology (JSRT). The JSRT data gnfidence value indicating the degree of abnormality foritipeit CXR.

the result of a study investigating the detection perforoeaf

radiologists for solitary pulmonary nodules [35]. The dats

collected from 14 medical centers and comprises 247 CXRgpecified in the SCR data. Note that the left mid lung field

All CXR images have a size of048 x 2048 pixels and a in Figure 3 contains a cancer nodule.

gray-scale color depth of 12 bits. Among the 247 CXRs, 93

CXRs are normal and 154 CXRs are abnormal. Each of the

abnormal CXRs contains one pulmonary nodule classified into IV. METHOD

one of five degrees of subtlety, ranging from extremely subtl

to obvious. However, in the JSRT images, the nodules hardlyThis section presents our implemented methods for lung

affect the lung shapes. The nodules are either well within tkegmentation, feature computation, and classificatiquurgi4

lung boundary or they are so subtle that the effects on lusgows the architecture of our system with the different psse

shape are minor. We can therefore take advantage of the eritig steps, which the following sections will discuss in more

JSRT database to train our shape model for a typical nornalgtail. First, our system segments the lung of the input CXR

lung. To do so, we use the segmentation masks provided Using a graph cut optimization method in combination with

van Ginneken et al. [22]. Their SCR dataset (Segmentatianung model. For the segmented lung field, our system then

in Chest Radiographs) contains the manually generated lwwgmputes a set of features as input to a pre-trained binary

field masks for each CXR in the JSRT database. For exampigssifier. Finally, using decision rules and thresholde t

Figure 3 shows an abnormal CXR from the JSRT databaslassifier outputs its confidence in classifying the inputRCX

together with the outline of the left and the right lung aas a TB positive case, for example.
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our method, the optimal configuration g¢f is given by the
minimization of the following objective function:

E(f) = Ea(f) + Es(f) + Em(f), )

where Ey4, E, and E,, represent the region, boundary, and
lung model properties of the CXR, respectively. The region
term E,(f) considers image intensities as follows:

Fig. 5. CXR and its calculated lung model. Eq f) = i 1 Z I, — Is| + Z I, — Ir| |,
mar \ (p,s)ec (p,T)EC
_ (2)
A. Graph Cut Based Lung Segmentation where I, is the intensity of pixelp and C is the set of

We model lung segmentation as an optimization problegflges representing the culy and It are the intensities of
that takes properties of lung boundaries, regions, andeshafpreground and background regions. We learn these iniesisit
into account [4]. In general, segmentation in medical insag@n the training masks and represent them using a soufce (
has to cope with poor contrast, acquisition noise due @nd terminal nodeX(). I,.q. is the maximum intensity value
hardware constraints, and anatomical shape variationsg Lf the input image. Eq. 2 ensures that labels for each pixel ar
segmentation is no exception in this regard. We therefoaésigned based on the pixel’s similarity to the foreground a
incorporate a lung model that represents the average IUpekground intensities.
shape of selected training masks. We select these mask$he boundary constraints between lung border pixedsid
according to their shape similarity as follows: We first bing ¢ are formulated as follows,
align all training masks to a given input CXR. Then, we
compute the vertical and horizontal intensity projectiafs E (f) = Z exp(—(I, — 1,)?). (3
the histogram equalized images. To measure the similarity (p,q)€C
between projections of the input CXR and the training CXRs,
we use the Bhattacharyya coefficient. We then use the averddis term uses the sum of the exponential intensity diffeesn
mask computed on a subset of the most similar training masKspixels defining the cut. The sum is minimum when the
as an approximate lung model for the input CXR. In partigulaintensity differences are maximum.
we use a subset containing the five most similar training siask Our average lung model is a 2D array which contains the
to compute the lung model. This empirical number producgmtobabilities of a pixep being part of the lung field. Based on
the best results in our experiments. Increasing the suiset shis model, we define the lung region requirement as follows:
to more than five masks will decrease the lung model accuracy
because the shapes of.the additional masks will typicafferdi En(f) = Z Pr, + Z (1 - Pr,), (4)
from the shape of the input x-ray. (p.T)eC (p.S)eC

As training masks, we use the publicly available JSRT
set [35] for which ground truth lung masks are available [22\vhere Pr,, is the probability of pixelp being part of the lung
The pixel intensities of the lung model are the probab#ittd model. This term describes the probability of pixels labele
the pixels being part of the lung field. Figure 5 shows a tylpicas lung belonging to the background, and the probability of
lung model we computed. Note that the ground-truth maspixels labeled as background belonging to the lung, acogrdi
do not include the posterior inferior lung region behind th® the lung model. We want to minimize both probabilities.
diaphragm. Our approach, and most segmentation approachegsing the three energy terms given above, we minimize
in the literature, exclude this region because manifestatdf the objective function with a fast implementation of min-
TB are less likely here. cut/max-flow algorithm [37]. The minimum-cut is then the

In a second step, we employ a graph cut approach [3§jtimal foreground/background configuration @f for the
and model the lung boundary detection with an objectivaput CXR [4]. Note that Eq. 4 extends our earlier work in [5],
function. To formulate the objective function, we defineetfir jn which we did not use a lung model. Compared to our work
requirements a lung region has to satisfy: a) the lung regign [4], we simplified Egs. 2, 3, and 4 so that they describe
should be consistent with typical CXR intensities expedted properties of the cut.

a lung region, b) neighboring pixels should have consistent

labels, and c) the lung region needs to be similar to the

lung model we computed. Mathematically, we can descrilgg Features

the resulting optimization problem as follows [4]: Lét=

{f1, f2, s fps---, fn} be a binary vector whose components To describe normal and abnormal patterns in the segmented
fp correspond to foreground (lung region) and backgrourdng field, we experimented with two different feature sets.
label assignments to pixele P, whereP is the set of pixels Our motivation is to use features that can pick up subtle
in the CXR, andN is the number of pixels. According tostructures in an CXR.
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1) Object Detection Inspired Features - Set As our can be seen from the local behavior in the vicinity of a pixgl
first set, we use features that we have successfully appliadan image/ by means of the second order Taylor series
to microscopy images of cells for which we classified the cedixpansion:
cycle phase based on appearance patterns [38], [39]. Ieis th
same set that we have used in our earlier TB classification I(z,s) ~ I(wo,s)+(x = o) VI(zo,5) )
work [6]. This set is versatile and can also be applied toaibje +1(x — xo)TH(aco, s)(x — x)
detection applications, for example in [40], [41], [42]. 2

The first set is a combination of shape, edge, and textutere VI (xo, s) stands for the gradient vector aftt(xo, s)
descriptors [6]. For each descriptor, we compute a histogras the Hessian matrix, both computed at pixgland scales.
that shows the distribution of the different descriptoruesi For each scale, we apply Gaussian filters as follows [52]:
across the lung field. Each histogram bin is a feature, and all 9 9
features of all descriptors put together form a featureorect Fpl(@or8) = 871(z0) * 5 G(,5) (8)
that we input to our classifier. Through empirical experitsen
we found that usin@2 bins for each histogram gives us goo
practical results [40], [41]. In particular, we use the daling
shape and texture descriptors [38], [39]:

hereG(z,, s) is the n-dimensional Gaussian for pixg] and
Scales, and~ is a weight parameter. With = 1, all scales
are weighted equally. The Gaussiéfiz,, s) is given by

1 _llzoll?

« Intensity histograms (IH) G(x,,s) = AT (9)
« Gradient Magnitude Histograms (GM) V/(2ms?)
« Shape descriptor histograms (SD)

Our approach uses the maximum filter response across
(M all scales. The main application in [52] (Frangi et al.) was
SD = tan ()\2> J ()  to enhance blood vessels, which have mostly thin elongated
) . shapes, through filtering. On the other hand, our goal is to
where A; and X, are the eigenvalues of the HessiaRgiect nodular patterns by capturing the spherical ortiiip

matrx, with X = Az ; shapes in the local intensity curvature surface. We thezefo
« Curvature descriptor histograms (CD) use the following Structure respons& filter based on the
OD — tan-1 NYESY] o eigenvalues\; and \s:
= n - - 4 ,
14+ I(z,y) GR = 1 — e VFPAl (10)

with 0 < CD < 7/2, wherel(z,y) denotes the pixel A large filter response value &R indicates the presence of
intensity for pixel(z, y). The normalization with respectlarge circular or elongated blobs, and is designed to detect
to intensity makes this descriptor independent of imagmdular features in CXR images. In the case of very thin
brightness. linear features, the structural response tends toward, zero
« Histogram of oriented gradients (HOG) is a descriptor fagith |\5| >> |A\;| ~ 0. For very large eigenvalues the
gradient orientations weighted according to gradient mafijiter response approaches one. The final eigenvalues that we
nitude [43]. The image is divided into small connectedse to compute the shape descriptor SD and the curvature
regions, and for each region a histogram of gradiedescriptor CD are the eigenvalues that provide the largest
directions or edge orientations for the pixels within thélter response over ten different Gaussian filter scalesaha
region is computed. The combination of these histograms= 2, 4,6, ..., 20.
represents the descriptor. HOG has been successfully used) CBIR-based Image Features - Set Bor our second
in many detection systems [44], [43], [45], [46], [40]. feature set, Set B, we use a group of low-level features
« Local binary patterns (LBP) is a texture descriptor thahotivated by content-based image retrieval (CBIR) [545][5
codes the intensity differences between neighboring pi¥his feature collection includes intensity, edge, textarsl
els by a histogram of binary patterns [47], [48]. LBP ishape moment features, which are typically used by CBIR
thus a histogram method in itself. The binary patterns asgstems. The entire feature vector has 594 dimensionshwhic
generated by thresholding the relative intensity betweésimore than three times larger than the feature vector oASet
the central pixel and its neighboring pixels. Because of itthd which allows us to evaluate the effect of high-dimeraion
computational simplicity and efficiency, LBP is succesgeature spaces on classification accuracy. We extract nfost o
fully used in various computer vision applications [49]the features, except for Hu moments and shape features] base
often in combination with HOG [40], [38], [39], [50], on the Lucene image retrieval library, LIRE [56], [57], [58]

[42], [51]. In particular, Feature Set B contains the following feasure
With each descriptor quantized into 32 histogram bins, our. Tamura texture descriptor: The Tamura descriptor is moti-
overall number of features is théis« 32 = 192. vated by the human visual perception [59]. The descriptor

The eigenvalues of the Hessian matrix needed for the shape comprises a set of six features. We only use three of these
and curvature descriptors in Eq. 5 and Eq. 6 were computed features, which have the strongest correlation with human
using a modification of the multiscale approach by Frangi et perception: contrast, directionality, and coarseness.
al. [52], [53]. The Hessian describes the second orderseirfa « CEDD and FCTH: CEDD (color and edge direction
curvature properties of the local image intensity surfades descriptor) [60] and FCTH (fuzzy color and texture
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histogram) [61] incorporate color and texture informatiomorkstation of the x-ray machine. The communication module
in one histogram. They differ in the way they capturef our software, which we implemented in Java, listens to the
texture information. DICOM workstation. This module can automatically receive

o Hu moments: These moments are widely used in ima@d@COM files and store them locally. It can also invoke the
analysis. They are invariant under image scaling, transereening methods described in this paper and output the
lation, and rotation [62]. We use the DISCOVIR systernalassification results (normal/abnormal) and their comioge
(Distributed Content-based Visual Information Retri¢valvalues. Because we coded many of our algorithms, such as
to extract Hu moments [63]. segmentation, feature extraction, and classification itldida

o CLD and EHD edge direction features: CLD (color layoutve created Java wrappers for these functions and integrated
descriptor) and EHD (edge histogram descriptor) athem into our Java code. We also added a straightforward user
MPEG-7 features [64]. CLD captures the spatial layoumterface that indicates whether a given x-ray is abnormal.
of the dominant colors on an image grid consisting of The truck will start its round trip from Moi University, and
8 by 8 blocks and is represented using DCT (discregl x-rays will be processed on-board by our software. Déepen
cosine transform) coefficients. EHD represents the lodalg on the availability of long-range wireless connectiothe
edge distribution in the image, i.e. the relative frequenacreening results will be transmitted on the fly to the track’
of occurrence of five types of edges (vertical, horizorbasis at Moi University or saved until the return of the truck
tal, 45-degree diagonal, 135-degree diagonal, and non-
directional) in the sub-images. V. RESULTS

« Primitive length, edge frequency, and autocorrelation: This section presents a practical evaluation of our work. We
These are well-known texture analysis methods, whighow lung segmentation examples and we evaluate our feature
use statistical rules to describe the spatial distribuiod both in combination and individually. We also compare the
relation of gray values [65]. performance of our proposed TB detection system with the

« Shape features: We use a collection of shape featuggsiformance of systems reported in the literature, incgdi
provided by the standard Matlab implementation (regiofthe performance of human experts.
props) [66], such as the area or elliptical shape features

of local patterns. A. Lung Segmentation Using Graph Cut
o Figure 6 shows three examples of our lung segmentation
C. Classification applied to CXRs from the MC dataset. The leftmost CXR has

To detect abnormal CXRs with TB, we use a suppodgalcifications in the right upper lung and extensive irregul
vector machine (SVM), which classifies the computed featurdfiltrates in the left lung with a large area of cavitatiorhel
vectors into either normal or abnormal. An SVM in its originaCXR in the middle of Figure 6 shows scars in the right upper
form is a supervised non-probabilistic classifier that gates lung, and the rightmost CXR has scars in the left upper lung
hyperplanes to separate samples from two different classesind some infiltrates as well. Figure 6 also shows the outlines
a space with possibly infinite dimension [67], [68]. The ureq of our segmentation masks for all three lungs. We can see
characteristic of an SVM is that it does so by computing thbat the segmentation masks capture the general shape of the
hyperplane with the largest margin; i.e. the hyperplandr witungs. Due to the use of a lung model, the infiltrates have not
the largest distance to the nearest training data point ¢f ampaired the quality of the segmentations, especially i th
class. Ideally, the feature vectors of abnormal CXRs willeha leftmost CXR. We can see a slight leakage of the segmentation
a positive distance to the separating hyperplane, andréeatin the apical regions for the second and third CXR. The lower
vectors of normal CXRs will have a negative distance. Thautlines toward the diaphragm could also be tighter in these
larger the distance the more confident we are in the classages.
label. We therefore use these distances as confidence valuddle compare our segmentation algorithm with the lung

to compute the ROC curves in Section V. boundary detection algorithms in the literature. For then€o
parison, we use the graph cut implementation of our segmen-
D. System Implementation tation described in [5]. As performance measure, we used the
While implementation in the field is under the direction OPverIap measure:
AMPATH, and out of the control of the authors, the current 0= rp (11)
system architecture and status of the project is as follows: TP+ FP+FN’

AMPATH has finished mounting a portable x-ray machine owhereT P is the correctly identified lung area (true positive),

a light truck that has been modified to allow radiographi€ P is the incorrectly identified lung area (false positive)dan
imaging. For example, the truck has been shielded agai#&lv is the missed lung area (false negative). Table | shows
radiation and has been equipped with an on-board powbe comparison results. We can see that our segmentation
generation unit and a desk for patient evaluation. The x-rayethod (GC, [4], [5], with best parameter settings) perform
machine is connected to a portable workstation provided bgyasonably well, though there are better segmentation-meth
the manufacturer that acts as a DICOM node, pushing images reported in the literature. Our segmentation perfooman

in a PACS framework. In the initial testing phase, our sofavais 4.5% lower than the human performance reported for the
runs on a second portable computer that is connected to #8RT set, which i94.6%.
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Fig. 6. Example lung segmentations for MC CXRs. Note the oegrrentation in the apices. The CXR on the left-hand side hegular infiltrates in the
left lung. The CXR in the middle has small non-calcified nodurethe upper lobes. Grouped non-calcified nodules are @sibthe CXR on the right-hand
side. Note also that we do not include the posterior infdiag region behind the diaphragm, similar to other lung segatiemt methods in the literature.

Method Avg + std Min Median | Max
Hybrid Voting [22] | 0.949+ 0.020 | 0.818 | 0.953 | 0.978 09
Human Observef22] | 0.946+ 0.018 | 0.822 | 0.949 | 0.972
PC postprocessed [22] 0.945+ 0.022 | 0.823 | 0.951 | 0.972 085 1
Hybrid ASM-PC [22] | 0.9344 0.037 | 0.706 0.945 | 0.968
Hybrid AAM-PC [22] | 0.933+ 0.026 | 0.762 | 0.939 | 0.966 08 1
MISCP [69] 0.930+ 0.045 - - - Qo7 |
ASMOF [70] 0.9274+ 0.032 | 0.745 | 0.936 | 0.946 e
ASM-SIFT [71] 0.920+ 0.031 | 0.783 0.928 | 0.961 % 07 ]
ASM [22] 0.903+ 0.057 | 0.601 0.924 0.960 s
GC [4], [5] 0.9014 0.054 | 0.541 0.911 | 0.969 3 0.65| i
ASM [71] 0.870+ 0.074 | 0.608 0.892 | 0.954 <=
AAM [22] 0.847+ 0.095 | 0.017 0.874 0.956 06 |
Mean shape [22] 0.7134+ 0.075 | 0.460 | 0.713 | 0.891
TABLE | 055 |
OVERLAP SCORES ONJSRTDATASET COMPARED TO GOLD STANDARD
SEGMENTATION. GC: GRAPH CuUT, PC: RXEL CLASSIFICATION, MISCP: 05 . . . . . .
MINIMAL INTENSITY AND SHAPE COST PATH, ASMOF: ACTIVE SHAPE 0 10 20 30 40 50 60 70

Feature Selection
MODEL WITH OPTIMAL FEATURES, ASM: ACTIVE SHAPE MODEL,

AAM: A CTIVE APPEARANCEMODEL.
Fig. 7. Exhaustive evaluation of all possible feature stssehe red curve
plots ROC performance (AUC) and the black curve is the classiftcuracy.

We have since significantly improved performance to

achieve state-of-the-art results and these will be redanie S coded as a 6-digit binary index. Each bit indicates the
a companion paper [72]. membership of one of the descriptors mentioned above. The y-

axis of Figure 7 shows the area under the ROC curve (AUC)
) ) and the accuracies for each descriptor combination (ACC);
B. Descriptor Evaluation for Feature Set A see the red and black curve, respectively. To compute the
We evaluate the performance of Feature Set A on the Mi&curacy in Figure 7, we use the natural decision boundaries
dataset. For each CXR in the MC dataset, we compute tbethe linear SVM classifier. We thus consider any pattern
descriptors in Feature Set A (see Section IV-B) and concatgassified with positive confidence value as abnormal and any
nate them into a single feature vector. We then apply a leaymttern with negative confidence as normal. Whenever we
one-out evaluation scheme, using the SVM-classifier desdri report classification results in the following, we will udast
in Section IV-C. According to the leave-one-out scheme, watandard classification scheme. Accuracy and AUC are highly
classify each feature vector (CXR) in the MC dataset witborrelated, with the AUC being higher than the accuracy for
a classifier trained on the remaining feature vectors (CXRsjost descriptor combinations. The jagged shape of botlesurv
of the MC dataset. We thus train as many classifiers as thardicates that some descriptors are less likely to incréase
are CXRs in the MC dataset (138 altogether). To get a betfmrformance when added to the descriptor mix. Nevertheless
understanding of the performance of individual descriptord we see that both the AUC and the accuracy tend to increase
descriptor groups, we perform leave-one-out evaluatiams fwith larger descriptor sets. In fact, we achieve the higAKE
all possible descriptor subsets. Figure 7 shows the retiogni value 0f86.9%, with an accuracy o¥8.3%, when we add all
rates we obtain. The x-axis of Figure 7 represents the difter descriptors to the descriptor set. Note that we have removed
descriptor combinations, where each possible descriptitget  one feature from the set originally proposed in our earlier
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Fig. 8. ROC curve for MC data and Feature Set A. Fig. 9. ROC curve for Shenzhen data and Feature Set A.
Feature Set A Feature Set B
. . . - . Montgomery County 86.9 80.1
publication [6]. The set presented here is now optimal in the Shenzhen Hospital 880 885

sense that removing one feature reduces the performance.

TABLE I
C. Machi Perf CLASSIFICATION PERFORMANCE(AUC) ON MONTGOMERY COUNTY AND

: achine Ferrormance SHENZHEN CXRS FORFEATURE SET A AND FEATURE SET B.

We present machine classification results for our two
datasets, namely the Montgomery County (MC) dataset from
our local TB clinic, USA, and the set from Shenzhen Hospitafl, .
China eature set computed on the Montgomery x-ray set, which is

' . lower.

1) Montgomery County:Figure 8 shows the ROC curve .

that we obtain when using all descriptors of Feature Set A.FOr the Shenzhen data and Feature Set B, we experimented

The ROC curve shows different possible operating poin‘f\é'th d|ffere_nt cla55|f|cat_|on methods_ to see how the perfor-
ance varies across different architectures. Table lllwsho

depending on the confidence threshold for the SVM classifi%{ﬂ. ; it ACC d der th
The y-coordinate indicates the sensitivity (or recall) afr o € performance results, accuracy ( ) and area under the

system, while the x-coordinate indicates the correspandi OC curve .(AUC)’ for the following architectgres: support
false positive rate, which is one minus the specificity. Th\éec.tor maphlne (S,VM) with linear (L), polynomial (F_)K)’ and
area under the ROC curve (AUC) in Figure 88i.9%, with radial basis function kernels (RBF), backpropagation aleur

an overall classification accuracy ©8.3%. According to the netyvqu (NN), _alternatlng dec_|S|0n tree (ADT), and linear
ROC curve in Figure 8, we achieve a sensitivity of abift; logistic regression (LLR). The first column of Table Ill shew

when we accept a false positive rate that is slightly highant

i e . SVM(L) | SYM(PK) | SYM(RBF) | NN | ADT | LLR

40%. This means that our specificity is a bit lower thgoto ACC 82_(1) 76(_4 ) 7é_4 ) 807 | 826 | 84.1

in this case. AUC 88.5 86.0 85.5 88.0 | 85.6 | 90.0
2) Shenzhen HospitalWe repeated the same experiments TABLE Il

. . CLASSIFICATION PERFORMANCE FOR DIFFERENT CLASSIFIER
on the set from Shenzhen Hospital. Figure 9 shows the ROCARCHITECTURES ONSHENZHEN CXR SET USINGFEATURE SET B.

curve that we computed for this set, again using the full
Feature Set A. We see that the ROC curve is slightly better
than the ROC curve for the data from our local TB clinithe performance for the linear support vector machine that
in Figure 8. In fact, the AUC is approximatel§8%. The we reported above. It is slightly higher than the rate for the
classification accuracy is also slightly better. We comgutgolynomial and radial kernels; in particular the accuragy i
an accuracy of abow2.5% for this set, which shows that we higher for the linear machine. We experimented with differe
can provide consistent performance across different eetasC-values for the support vector machines, and found that the
and for practically relevant data. standard value( = 1) provides the best performance in our
We also computed the performance results for our secocase, with only slight differences in general. Table Il wko
feature set, Set B. Interestingly, with this feature set, what the AUC is relatively stable across different archiiees,
achieve a similar performance. Using a linear support vectmith the linear logistic regression providing a slightlytiee
machine, we obtain an accuracy of ab&afs and an AUC overall performance.
of 88.5%. Thus, increasing the feature dimensionality does not3) Comparison with other Systems in the Literature:
lead to any improvement in performance. the literature, only a few papers have reported performance
For comparison purposes, we list the AUC values for omumbers for full-fledged TB screening systems, for exam-
two x-ray sets and our two feature sets again in Table Il,qusiple [25], [31], [26]. Many papers evaluate only part of the
our linear SVM. Table Il also contains the result for the s@to detection problem and concentrate on sub-problems, such as
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cavity detection [28], [27]. Judging by the ROC curves, thgputum cultures. In their observer study, four clinical agfs
performance of our system is comparable to the performarered two certified readers scored all x-rays between zero and
of some existing systems that address the problem in ftendred. Maduskar et al. compared the human performance
entirety. For instance, the AUC value of our system is higharith the performance of their software, which uses the same
than the AUC values reported for the systems in [25] and [3Kcore range. They computed the areas under the ROC curves
Our AUC value is also slightly higher than the AUC valueand obtained values between 70% (clinical officers) and 72%
reported by Hogeweg et al., who use a combination of textufgftware), showing that there is no significant difference
and shape abnormality detectors [26]. However, for a fdietween human and machine performance. This result is in
comparison of these systems, we would have to evaluaecordance with our own study, in which we compared the
each system on the same dataset. Currently, the trainisg garformance of our system with human performance (see
in [25], [31], [26] are not publicly available. As yet, theeno below).
publicly available CXR set of sufficient size that would allo  2) Our Study: In our study, we asked two radiologists to
training of a TB screening system. For the time being, we hapeovide a second and third reading for our MC CXR set.
to content ourselves with the fact that some existing systefdoth radiologists work at a United States clinical cented an
provide reasonable performances across different dataset hospital, respectively. We made them aware of the purpose
plan to make both our sets, the MC set as well as tleé our screening project, that is, to detect tuberculosis in
Shenzhen set, available to the research community, so taapopulation from an endemic region who is otherwise to
other researchers can compare their performance. For a miageconsidered healthy. As a result the recommendations for
detailed overview of existing TB screening systems, werrefevaluation of TB screening from the WHO Lime book were
readers to our recent survey in [32]. considered in the decision making process, in particukauge
of intentional overreadingl]. To present the CXR data to the
radiologists, we adapted our Firefly labeling tool, allogvihe
radiologists to see the CXRs online and store their readings
In the following, we compare our system performance witin a database [75]. Table IV shows the agreement of both
human reading performance of two earlier studies reportestiologists on the MC data. A plus sign indicates CXRs
in the literature. We also conducted our own independent
observer study, asking two radiologists to read the MC CXR
set (LF, JS).

D. Comparison with Human Performance

Radiologist B
+ -

69 15 84

1) Earlier Studies: Van't Hoog et al. investigated the Radiologist A 6 48 54
performance of clinical officers in a tuberculosis prevaken ~ 63 138
survey [73]. Their study shows that clinical officers with TABLE IV
sufficient training, rather than medical officers, can aghie RADIOLOGIST AGREEMENT ONMONTGOMERY CXRSs.

an acceptable performance when screening CXRsafor

abnormality Van't Hoog et al. therefore recommend training . . . .
of clinical officers for TB screening programs in region§|ass'f'ed as TB positive (abnormal) by one of the radiolsgis

where medical personnel with radiological expertise ise.rarand th? minus sign represents' CXRS classified as normal.
In their study, two experts achieve sensitivities &f%s and According to Table 1V, both radiologists agree $4.8% of

83%, respectively, when screening CXRs of patients withe cases¥%% CL:[77.7,90.3], using exact one-sample test of
bacteriologically confirmed TB forany abnormality The prgportlon). The corresponding kappa valuexis 0.69, 95%
corresponding specificities a88% and74%, respectively. on C':[0-52,0.86]). This signifies moderate agreement.

the other hand, three clinical officers achieve a sensitivft After their individual readings, both radiologists coneen

95% and a specificity of73% for the same task. Note that© come to a consensus decision, rec_opcnln_g readings for
each of the experts has a lower sensitivity than the gro ich they have disagreed. For the remaining discrepaescas

of clinical officers. We can compare these numbers with th8€Y agreed the findings were consistent with TB. Table V
ROC curve in Figure 8, which shows the performance of o ows a comparison of their consensus decision with théslabe

automatic system. We see that humans still perform bet Lem our local TB clinic. We consider the latter to be ground-

than our automatic system, and also better than other sgst Fch Iz_abelsdbecausehthﬁybarﬁ bzzs_e:j on Cl'hn'zal data as wIeII
reported in the literature. Nevertheless, our system pado as patient data to which both radiologists had no access. In

reasonably well and its performance, while inferior, ishivit Consensus
reach of the clinical officers’ performance in the study ohVa + -
Hoog et al. For the same sensitivity provided by the clinical Ground Truth gg 505 gg
officers 5%), our system achieves a specificity that is about 83 55 | 138
15% lower than the specificity of the clinical officers.

In another recent study, Maduskar et al. showed that auto- TABLE V

COMPARISON OF HUMAN CONSENSUS PERFORMANCE WITH GROUND

matic chest radiograph reading for detection of TB has simil TRUTH OF MONTGOMERY CXRS.

performance as clinical officers and certified readers [74].
They collected a dataset df66 digital CXRs in Zambia,
containing 99 positive and67 negative cases confirmed byTable V, the number of false negatives is zero, which means
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the radiologists succeeded in detecting all TB positiveesas VI. CONCLUSION

Therefore: Fh_e sgnsitivity (recall) 190% (95% CI:[93'8’100])'_ We have developed an automated system that screens CXRs
The specificity is68.8% (95% CI:[57.4,78.7]), so there is ¢, manifestations of TB. The system is currently set up for
a considerable number of false positives, namély Both 4 vical use in Kenya, where it will be part of a mobile syste
radiologists agree i81.9% of the cases with th‘? ground-for TB screening in remote areas. When given a CXR as input,
truth data 95% CI:[74.4,87.9]), which is a relatively low o sustem first segments the lung region using an optiroizati
recognition rate (_j_ue to overreading and trying not to Mig$Sainod based on graph cut. This method combines intensity
any potential positive TB case. _ _ information with personalized lung atlas models derivemifr

In Table VI, we compare our machine output with thgq y1aining set. We compute a set of shape, edge, and texture

ground-truth data, using again the standard classificatiihyres as input to a binary classifier, which then classiie
scheme that considers patterns classified with po&ﬂvét—corgiven input image into either normal or abnormal.
r

dence as abnormal. Here, the agreement with the grourtu-t Uin this paper, we compare two different established feature
sets: one set typically used for object recognition and the

Machine
+ - other used in image retrieval applications. We also expamtm
Ground Truth  + ‘112 (1;2 gg with different classifier architectures. Both feature satsl
- ‘S5 so 138 most of the classifier architectures we tested, provide #asim
performance. To improve the performance further, we could
TABLE VI try to improve the lung segmentation, which provides averag

COMPARISON OF e | CROUNDTRUTHOF - performance compared to other systems in the literature. On
' approach would be to find optimal weights for the terms in the
graph cut energy function. Another possibility would be seu
data is slightly lower than in the previous expert consensi¥re atlas-based lung models for computing the average lung
table. The machine agrees with the ground-truth dais% model (see our companion paper [72]). We could also try to
of the casesd6% CI:[70.4,84.8]). This is the same recognitiorpartition the lung into different regions, as some of theséng
rate we reported in Section V-C for the MC set. Note that tHeAD systems do. It is surprising that we achieve a relatively
false positives and the false negatives are evenly distibu high performance compared to other approaches by using
with a sensitivity of74.1% (95% Cl:[61.0,84.7]) and a speci- only global features. This may indicate that the combimatio
ficity of 81.3% (95% CI:[71.0,89.1]). This is because we havef local features in the literature is still suboptimal. Adin
not optimized the true positive rate for our classifier. If waerdict on this issue can only be made once public benchmark
do so, we can see from the ROC curve in Figure 8, that @iata becomes available. Due to the lack of this data for
order for the sensitivity to be close 100%, our false positive TB detection in CXRs, it is currently difficult to do a fair
rate would be slighter higher tha@d%. This is about twice as comparison of the few existing systems that have been regort
high as the false positive rate for the radiologist’s cossen in the literature. We therefore plan to make both our dasaset
decision in Table V, which is abow1%. publicly available. One of these sets, the Shenzhen segrns f
Finally, in Table VII, we compare the correct and incorred high-incidence area. For both sets, we achieve an AUC of
classification results of the two radiologists and the maehi 87% and 90%, respectively. Furthermore, our performance,

In terms of classification performance, the radiologiste awhile still lower than human performance, is reasonablgelo
to the performance of radiologists. In an independent oleser

Correcsnsei'r‘]i‘éfrect stuo_l)_/ with two radiologists,_\_/vho were try_ing not to mi_ss any
_ correct 89 19 108 positive case, our false positive rate is twice as high atagr
Machine . orrect 24 6 30 to the ROC curve. The likelihood that both the radiologistd a
113 2 | 138 the machine reach a wrong conclusion is very low. This shows
TABLE VI that it should be possible to reach human performance in the

PERFORMANCE COMPARISON BETWEEN MACHINE AND RADIOLOGIST ~ TUture, or at least have a system that can assist radiaogist
CONSENSUS FORMONTGOMERY CXRs. and public health providers in the screening and decision
process. These comparison results have encouraged ug to tes

our system in the field under realistic conditions. In future

not S|gn|f|cantlyhbettr(]ar thanb thefmachmfe (Mh(?NﬁEaL tﬁséxperiments, we will evaluate our system on larger datasets
p= 0'.54)' Note that the number o CXR,S or which both the 5 \ye will collect using our portable scanners in Kenya.
machine and the consensus are wrong is remarkably low. The

combined human-machine performance with a significantly
lower error rate 0ft.3%, compared to the machine-only error
rate of 21.7% and the human consensus error .1%, The Montgomery County x-ray set as well as the Shenzhen
suggests using our system for computer-aided diagnosis ataspital x-ray set are available for research purposes upon
offering a verifying second opinion of radiologist reading review of request for data. To submit the request, please vis
This can help improve human performance because it thge following webpage:http://archive.nim.nih.gov/. émdhe
unlikely that both the radiologist and the machine clas8ify “Repositories” tab, a link points to a page with more informa
same CXR incorrectly. tion on our chest images, including contact information.

APPENDIX
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